Многие путаются в коэффициентах Джини, не понимают, что они бывают разные и для разных задач (и названия у них разные — просто в русском переводе, как всегда, многое схлопывается в один термин).
Есть коэффициент/индекс Джини (Gini coefficient), который используют при оценке качества классификации и регрессии. На русской странице Wiki не очень информативно, но вот на английской всё подробно: изначально это был статистический показатель степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку. Вычисляется как отношение площади фигуры, образованной кривой Лоренца и кривой равенства, к площади треугольника, образованного кривыми равенства и неравенства. Сейчас поясню.
Допустим, в компании работают 4 человека с суммарным доходом 8000$. Равномерное распределение дохода — это 2000$+2000$+2000$+2000$, неравномерное — 0$+0$+0$+8000$. А как оценить неравномерность, скажем, для случая 1000$+1000$+2000$+4000$? Упорядочим сотрудников по возрастанию дохода. Построим кривую (Лоренца) в координатах [процент населения, процент дохода этого населения] — идём по всем сотрудникам и откладывает точки. Для первого — [25%, 12.5%] — это сколько он составляет процентов от всего штата и сколько процентов составляет его доход, для первого и второго — [50%, 25%] — это сколько они составляют процентов и сколько процентов их доход, для первых трёх — [75%, 50%], для всех — [100%, 100%].
На. Рис. 1. построенная кривая Лоренца показана красным цветом. Кривая Лоренца, которая соответствует равномерному распределению дохода, — синяя диагональ (т.н. кривая равенства). Кривая Лоренца, которая соответствует неравномерному распределению, — зелёная (т.н. кривая неравенства). Вот площадь A, делённая на A+B=0.5, и есть коэффициент Gini.
При оценке качества классификации GINI = 2*AUCROC-1. Про AUCROC я уже как-то писал. Почему это они так связаны нигде подробно не описано. Я нашёл упоминание в работе Supervised Classification and AUC. Там всё логично: если в задаче классификации на два класса 0 и 1 интерпретировать эти числа как доходы. Но чтобы связь была именно GINI = 2*AUCROC-1, должно быть что-то типа рис. 2 (но ROC-кривая и кривая Лоренца это не одно и то же), кстати в презентации Credit Scoring and the Optimization concerning Area under the curve такая же картинка.
Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Я дал ссылку на английскую Wiki, поскольку русского аналога нет. Он тоже измеряет «равномерность», если p_i — частоты представителей разных классов в листе дерева, то коэффициент Джини для него равен
Только вот это другая равномерность, никак не связанная с рассмотренной ранее. Для первой нужно два показателя — доход и численность населения с таким доходом, а тут только проценты (частоты). В английской версии на странице Gini coefficient написано «не путать с Gini impurity» и наоборот.
Я не знаю, как лучше переводить impurity, скажем, С.П.Чистяков переводит как «загрязненность» (на мой взгляд, не очень звучит…).
Коррадо Джини (Corrado Gini, 1884), который всё это придумал был итальянским статистиком. Но кроме этого, он известный идеолог фашизмa, написал книгу «Научные основы фашизма». Прожил, кстати, довольно много — 80 лет, видимо, после войны не преследовался. Вот так бывает…